Percutaneous liquid nitrogen cryoablation for bone lesions:
feasibility and preliminary results

Authors: Dr. Duccio Rossi1,2, Dr. Guido Bonomo2, Dr. Paolo della Vigna2, Dr. Nicola Camisassi2, Dr. Daniele Maiettini2, Dr. Giovanni Mauri2, Dr. G.M. Varano 2, Dr. Franco Orsi2

1Radiology Resident, Università degli Studi di Milano, Via Festa del Perdono 7, 20122, Milan, Italy.

2Division of Interventional Radiology, IEO, European Institute of Oncology IRCSS, Via Giuseppe Ripamonti 435, 20141, Milan, Italy.
Purpose

- To assess safety and feasibility of cryoablation using a **liquid nitrogen-based cryogenic system** in patients with metastatic bone lesions.
Methods and Materials

9 patients → 5 males; 4 females treated with percutaneous cryoablation using a liquid nitrogen-based cryogenic system under general anaesthesia and CT imaging guidance from January to December 2020.

9 Metastatic bone lesions →

- 3/9 renal cell carcinomas (RCC)
- 2/9 lung carcinoma
- 1/9 breast carcinoma, 1/9 sarcoma, 1/9 mesothelioma and 1/9 colorectal cancer

All cases were contraindicated for other treatments, such as surgery or radiotherapy, due to comorbidity or prior irradiation.
The Cryogenic system uses **liquid nitrogen as a cryogen**, which reaches temperatures as low as **-196°C**.

- The cryogen **under low pressure** causes the cryoprobe to reach a very low temperature, thereby freezing the malignant tissue, which causes irreversible membrane damage and cell death.

- By **modulating the temperature in a freeze-thaw-freeze pattern**, the cryoprobe produces an **ice ball**, with adjustable sizes that can ensure proper cytocidal temperatures throughout the tumor lesion.

- **Main advantages** of this novel system include **lower procedure temperatures** that are assumed to be more effective in treating tumors and **better safety profile due to lower working pressure**.
Results

- The treatments were feasible in all cases, allowing to complete the treatment as preoperatively planned (technical success 100%).

- On average 2/3 cycles of cryoablation were performed with a mean procedure duration time of 45 minutes (range 12-120 minutes).

- At a median follow-up of 5 months ➔ only two minor adverse events were reported in 2/9 lesions (22%). No reported major or severe adverse events.
Results – A real case

History
Female 72yo
Left lobectomy for lung cancer
RT for chest wall relapse (rib)
Pain of single tumor site

Approach
MDTB: Cryo with radical intent
Left rib tumor cryoablation

The max tumor diameter is calculated and lies outside of the CT axial plane.
Results – A real case

The ideal approach is planned using a CT-navigation system.

Local anesthesia is applied with the patient being in GA.
Results – A real case

The coaxial introducer is placed in the needle holder

The coaxial-needle is inserted

The CT is used to check the cryo-probe insertion before treatment
Results – A real case

CT control of the iceball using the pull-back technique

- The treatment is performed in 3 cycles of 10’-15’-10’
Results – A real case

CT control after 24h

- The lesion was fully covered by treatment margins

VAS=8/10 VAS=1/10
Conclusions

- CT-guided cryoablation is a clinically safe and feasible technique

- Longer follow-up and larger groups of patients are needed to obtain stronger clinical outcomes